
34 570684 Ch27.qxd 3/31/04 2:58 PM Page 345

Chapter 27: Ten More Things You Need to Know about the C Language 345

Interacting with the Command Line

In Chapter 22, you may have read briefly about how the main() function
returns a value to the operating system when the program quits. That’s one
way that a program can communicate with the operating system. The other
way is to read in options directly from the command line. For example:

grep pirntf *.c

This shell command searches for misspellings in your C language source
code. The command has two command-line arguments: pirntf and *.c.
These two strings of text are passed to the main() function as arguments as
well, which the program can then evaluate and act on, just as arguments
passed to any function.

The problem with introducing such a thing in this book is that you need
to understand more about arrays and pointers to be able to deal with the
information passed to the main() function. That too will have to wait for
another day.

Disk Access

One of the reasons you have a computer is to store information and work on it
later. The C language is equipped with a wide variety of functions to read and
write information from and to the disk drives. You can save data to disk using
C just as you can with any program that has a File➪Save command — though
in C, it is you who writes the File➪Save command.

Interacting with the Operating System

The C language also lets you perform operating system functions. You can
change directories, make new directories, delete files, rename files, and do
a host of other handy tasks.

You can also have your programs run other programs — sometimes two at
once! Or, your program can run operating system commands and examine
the results.

Finally, you can have your program interact with the environment and exam
ine the state of your computer. You can even run services or prowl out on the
network. Just about anything the computer can do, you can add into your
program and do it yourself.

